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Letter

Darwinian and demographic forces affecting human
protein coding genes
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Past demographic changes can produce distortions in patterns of genetic variation that can mimic the appearance of
natural selection unless the demographic effects are explicitly removed. Here we fit a detailed model of human de-
mography that incorporates divergence, migration, admixture, and changes in population size to directly sequenced data
from 13,400 protein coding genes from 20 European-American and 19 African-American individuals. Based on this
demographic model, we use several new and established statistical methods for identifying genes with extreme patterns of
polymorphism likely to be caused by Darwinian selection, providing the first genome-wide analysis of allele frequency
distributions in humans based on directly sequenced data. The tests are based on observations of excesses of high
frequency–derived alleles, excesses of low frequency–derived alleles, and excesses of differences in allele frequencies
between populations. We detect numerous new genes with strong evidence of selection, including a number of genes
related to psychiatric and other diseases. We also show that microRNA controlled genes evolve under extremely high
constraints and are more likely to undergo negative selection than other genes. Furthermore, we show that genes involved
in muscle development have been subject to positive selection during recent human history. In accordance with previous
studies, we find evidence for negative selection against mutations in genes associated with Mendelian disease and positive
selection acting on genes associated with several complex diseases.

[Supplemental material is available online at www.genome.org.]

Complete data on DNA sequence from multiple individuals pro-

vide the gold standard for inference of population genetic factors,

including the inference of Darwinian selection. It is widely hoped

that by flagging genes undergoing Darwinian natural selection, it

will be possible to identify genes that may affect human-specific

traits or human phenotypic variation. Much interest has, for ex-

ample, focused on genes that may explain the increase in brain

size in humans compared with other primates (Evans et al. 2005;

Mekel-Bobrov et al. 2005) or genes associated with human genetic

diseases (Bustamante et al. 2005; Kelley et al. 2006). In some

genome-wide studies, researchers have identified individual genes

likely to have been targeted by selection using the ratio of non-

synonymous to synonymous mutations identified through com-

parisons between different species (Clark et al. 2003; Nielsen et al.

2005a) or using both population genetic and interspecific data

(Bustamante et al. 2005). Other studies have used single nucleo-

tide polymorphisms (SNPs) from available databases to identify

regions in the human genome that may recently have been tar-

geted by selection (Akey et al. 2002; Carlson et al. 2005; Ronald

and Akey 2005; Kelley et al. 2006; Voight et al. 2006; Wang et al.

2006). Together, these studies are beginning to provide a picture of

how Darwinian selection has acted to form the human genome.

For example, genes involved in the immune system or in game-

togenesis, certain transcription factors, apoptosis-related genes,

and olfactory receptors seem more often to have been targeted by

positive selection, i.e., selection favoring the fixation of new

mutations. A number of individual genes that may underlie phe-

notypic variability or species-specific differences have also been

identified (Clark et al. 2003; Voight et al. 2006; for a recent review

of the literature, see Nielsen 2005; Kelley et al. 2006; Sabeti et al.

2006).

One special challenge when scanning a genome for evidence

of selection is that variability in the genome is also strongly af-

fected by demographic processes, such as population growth or

bottlenecks, and by variation in the mutation and recombination

processes (Simonsen et al. 1995; Nielsen 2001; Przeworski 2002).

Variability in the genome has been modulated through a complex

interaction of random processes, selection, mutation, and re-

combination. While the methods based on comparing non-

synonymous and synonymous mutations are relatively robust

to these factors, methods using the frequency of alleles within

populations, in one way or another, are not. Extra attention

must, therefore, be paid to the effect of demographic factors and
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variation in the mutation and recombination rates (Nielsen 2001;

Currat et al. 2006).

In this article, we present an analysis of 13,400 human genes

directly sequenced in 20 European-Americans (EAs) and 19 African-

Americans (AAs). Using several different computational tools and

a complex demographic model to partially control for the effects

of demography, we identify genes and groups of genes targeted by

selection in humans currently or in the past. Most other large-scale

data sets in humans have been constructed through a complicated

process in which SNPs have first been identified based on a panel

of just a few individuals and subsequently typed in a larger panel.

This complicates the interpretation of the data, because this SNP

discovery process introduces an ascertainment bias (e.g., Nielsen

and Signorovitch 2003; Nielsen et al. 2004). For many large-scale

SNP data sets (e.g., dbSNP and HapMap data), the ascertainment

protocols vary considerably among different regions, complicat-

ing the interpretation of the data and invalidating the use of

standard genomic methods for detecting selection. However, the

data analyzed here have been obtained through direct sequencing

and do not suffer from any of these problems.

Previous studies of this collection of directly sequenced genes

have focused on detecting positive selection that increases or

decreases the rate of substitution among species (Clark et al. 2003;

Bustamante et al. 2005; Nielsen et al. 2005a). However, selection

may also affect other properties of the data, in particular an excess

or deficiency of low or high frequency polymorphisms (Gillespie

1978; Braverman et al. 1995; Przeworski 2002; Charlesworth

2006). Focusing on different aspects of the data allows us to

identify loci targeted by Darwinian selection that may have, thus

far, eluded detection by other approaches.

Methods for detecting selection based on allele frequency

distributions include Tajima’s D (Tajima 1989), Fay and Wu’s H

(Fay and Wu 2000), the use of FST (e.g., Carlson et al. 2005), the

HKA test (Hudson et al. 1987), and a number of other statistics.

These statistics can all be calculated as functions of the so-called

two-dimensional site frequency spectrum (2D-SFS). The 2D-SFS

summarizes the joint allele frequencies in the two populations in

a matrix containing the number of SNPs with sample frequency i

in one population and j in the other population in the (i, j)th entry

of the matrix. To detect selection we devise a number of different

statistics that summarize specific aspects of the 2D-SFS. This allows

us to examine different aspect of the action of selection and dis-

tinguish between different types of selection.

Results

Admixture and demography

Our inference procedure has three steps. We first estimate ad-

mixture proportions between Africans and Europeans for all

individuals in the sample. Then, given these admixture pro-

portions, we estimate the parameters of a human demographic

model. We then carry out tests of neutrality using the estimated

demographic model (with admixture) as the null-model instead of

using a standard neutral model.

The admixture proportions were estimated using a maximum

likelihood approach (for details, see Methods). The estimates of the

admixture proportions were 0% for all EA individuals. For AAs, we

obtained estimates of 0% admixture for 15 individuals and 23%,

27%, 40%, and 42% for the remaining four individuals. The esti-

mates of 0% admixture for most of the individuals may likely be an

artifact caused by a lack of parental sample populations for these

loci. We have, therefore, also repeated the analysis of significant

genes using models based on other admixture assumptions.

Demographic parameters were then estimated for a model

that assumes divergence of the African and European populations

from a common ancestral population T generations ago. Also,

a model allowing a bottleneck in African did not improve upon

the fit of the model. It is assumed that both populations have been

expanding exponentially since the divergence event at rate aA and

aE for Africans and Europeans, respectively (Slatkin and Hudson

1991). Gene-flow at a rate of m migrants per generation was also

allowed between the two populations, and the ratio of the current

African to European population sizes was set to g. Finally, we as-

sume that the European population went through a bottleneck

0.1 3 2Ne generations ago, which lasted 0.01 3 2Ne generations,

and reduced the population size by a factor b. The reason for fixing

some of these parameters’ values is that the data do not allow

independent estimation of all parameters (e.g., Adams and Hud-

son 2004; Myers et al. 2008) and that a relatively recent European

bottleneck is consistent with previous efforts for estimating de-

mographic parameters from human nuclear data (e.g., Schaffner

et al. 2005). The demographic model is summarized in Figure 1.

The estimation procedure applied here is based on fitting the

demographic model to the 2D-SFS. In brief, a coalescent simula-

tion approach similar to the approach suggested by Nielsen (2000)

was used to calculate the probability of observing a particular

distribution of SNP allele frequencies. Taking a product of the

probabilities of all SNPs provides a composite likelihood function,

which can be optimized to provide estimates of the demographic

parameters (for more details, see Methods).

Because the frequency spectrum differs between the X chro-

mosome and the autosomes, and because migration rates and ef-

fective population sizes may differ between males and females, the

models were first fitted to the autosomal data. Based on the esti-

mates from the autosomal data of aA, aE, b, and g, estimates of m

and T are then subsequently obtained from X chromosome data.

The maximum likelihood estimates of the parameters based

on the autosomal data were T = 0.099, aA = 9.5, and aE = 21.1, g =

1.82, b = 0.018, and m = 6.67, when all parameters are scaled with

the current European population size (Ne). Calibrating with the

observed number of human–chimp nucleotide differences and the

average number of segregating sites in the European sample and

assuming 6 million years (Myr) of divergence between humans

and chimpanzees, we obtain an estimate of the current effective

European population size of 15,500 individuals. The estimate of

Figure 1. A graphical illustration of the model of the demographic
history of European-Americans (EAs) and African-Americans (AAs).
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the divergence time between Europeans and Africans is then 1535

generations, or about 92,000 yr, assuming a generation time of 30

yr. The estimate of the average European growth rate becomes

approximately 0.07% per generation since the African–European

divergence. These results are similar, but not identical to the esti-

mates by Schaffner et al. (2005). They assumed an out-of-Africa

divergence time of 3500 generations (corresponding to 105,000 yr

assuming a generation time of 30) and obtained an Africa–European

migration rate of 3.2 3 10�5. Our estimates of the migration rate is

;2 3 10�4, almost an order of magnitude larger than the estimate

by Schaffner et al. (2005). We are not certain what causes the dis-

crepancy, but inadequate modeling of the admixture in AAs is one

obvious explanation.

The estimate from the X chromosome data of m and T was

m = 2.75 and T = 0.14. A higher estimate of T for X chromosome

data is expected because of the lower effective population size of

the X chromosome compared to autosomes.

The model provided quite a good fit to the data as illustrated

by the predicted and observed marginal frequency spectra (Fig. 2).

The demographic model could not be rejected by a goodness-of-fit

test comparing the expected and observed two-dimensional

frequency spectrum (P = 0.54 and 0.18 for autosomal and X

chromosome data, respectively). The goodness-of-fit test was per-

formed using a full simulation procedure taking linkage and re-

combination into account (for details, see Methods).

Tests of neutrality

With the exception of tests based on haplotype structure, most

neutrality tests are based on statistics derived from the 2D-SFS,

possibly combined with the number of fixed differences (FDs)

between species. We have derived a number of new tests based on

various aspects of the 2D-SFS (which in our definition includes

FDs) that will help distinguish between different types of selec-

tion. The tests are described in more detail in the Methods section.

The G2D test uses all of the information in the 2D-SFS data and

will be sensitive to any deviations from neutrality. It measures the

fit of the SNP allele frequencies and FDs in a particular gene

compared with the overall pattern seen in the genome. The MWU-

high and MWU-low test detect an increase in the proportion of

high and low frequency polymorphisms, respectively; and FST

detects elevated differences in allele frequencies between AAs and

EAs. Significance is determined using a detailed coalescent simu-

lation procedure that takes demography, admixture, intergenic

linkage, missing data, and multiple hits into account. In brief, data

are simulated for each gene to match the same number of muta-

tions as were observed, and the distributions of the test statistics

for these simulated data are compared to the observed values (see

Methods section). All tests are performed on the unfolded fre-

quency spectrum using comparisons with the chimpanzee, unless

otherwise noted. The possibility of incorrect assignment of an-

cestral states is taken into account when assigning P-values (see

Methods).

A 5% false discovery rate (FDR) set (see Methods) for the G2D

test contains 737 genes out of 7911 genes with more than five

polymorphisms or FDs. A Bonferroni correction gives P < 0.01 for

the overall significance. For the, FST, MWU-high, and MWU-low,

the 5% FDR set contains only two, three, and zero genes, re-

spectively, out of 2582 genes with more than five polymorphisms.

This illustrates that, after accounting for demographic effects,

there is only a strong signal in very few genes. The variability

found in the vast majority of genes is easily described by the de-

mographic model. Had we instead used a standard neutral de-

mographic model to obtain critical values, the estimate of the

number of true positives would be 2458 for the FST-based test and

401for the MWU-low test. This illustrates the dramatic impact

demographic assumptions can have on tests of neutrality.

To verify that our tests in fact do detect selection among the

most extreme genes, we compared our results to results based on

the so-called neutrality index (NI) (Rand and Kann 1996). The NI

is given by the ratio of polymorphic to fixed nonsynonymous

mutations divided by the ratio of polymorphic to fixed synony-

mous mutations. If selection is acting recurrently, the NI ought to

provide an independent check for consistency of changes imposed

by selection. Under neutrality, even under complex demographic

models, the expectation of the NI is independent of FST, MWU-

low, MWU-high, and G2D (see Methods). If selection is not acting

on any of the mutations, the ratio of nonsynonymous to synon-

ymous mutations within and between species should be the same.

This prediction also holds true for any category of genes that have

been chosen based on allele frequency distributions. However, if

selection is acting on the genes, we would expect that positive

selection, which increases the rate of substitution among species,

should cause NI < 1 and negative selection should result in values

of NI > 1. However, it should also be noticed that certain types of

selection, such as some forms of balancing selection, may have

very little impact on the NI (Williamson et al. 2004).

As expected, 200 genes with the smallest P-values according

to the MWU-high test have lower NI than the 200 genes with

highest P-values (Fig. 3). Likewise, the test based on MWU-low

show the opposite pattern of NI values. A small NI indicates pos-

itive selection increasing divergence among species or less nega-

tive selection, and a large NI indicates negative selection against

new mutations or, possibly, some form of balancing selection. The

results shown here demonstrate that genes with a skew toward

high frequency–derived alleles, as detected by the MWU-high test,

Figure 2. The unfolded marginal frequency spectra predicted from the
best-fitting model (simulated) and the observed marginal frequency for
European-Americans (top) and African-Americans (bottom) from the au-
tosomal data. The zero category represents SNPs that are absent from one
population but present in the other.
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have been under positive selection in the past. The results based

on G2D with no FDs suggest that this test tends to capture genes

under positive selection. Somewhat surprisingly, the test based

on FST and G2D with FDs shows no difference between NI and the

10 genes with smallest and highest P-values. The results for the

G2D test may not be surprising given that this test has significant

power to detect both positive and negative selection. Significant

genes according to this test will, therefore, consist of a mixture

of genes with high NI and with low NI. The results for FST may

be a bit more surprising and are discussed in more detail in the

Discussion section. Detailed results for each gene are provided in

Supplemental material S1.

Most extreme allele distribution (G2D)

This statistic measures the difference in the distribution of SNP

allele frequencies and fixed polymorphisms between the gene and

the genome-wide distribution. It summarizes how surprised we

should be at observing the data from a particular gene given the

information regarding allele frequencies. Out of the 15 genes with

smallest P-values (most unusual allele frequency distribution), 9,

5, and 1 genes have an excess of intermediate, low (#0.2), and

high ($0.8) frequency-derived alleles, respectively, in either pop-

ulation or both, and three genes show significant allele frequency

differences between populations (Table 1).

The most significant gene, EFCAB4B, has an excess of low

frequency alleles and contains no FDs to the chimpanzee.

EFCAB4B is a calcium-signaling protein that interacts with ATN1,

which has been associated with inherited ataxias (Lim et al. 2006).

The excess of low frequency alleles is consistent with slightly

deleterious mutations segregating in this gene. The second gene

on the list is ZNF473. It shows a high level of population sub-

division and has, furthermore, an excess of intermediate-

frequency alleles in AAs, indicating that ZNF473 might evolve by

balancing selection or is affected by an incomplete selective

sweep. ZNF473 has KRAB and zinc-finger domains; this class of

proteins has previously been shown to contain positively selected

genes (Nielsen et al. 2005a). Surprisingly, this particular protein is

involved in transcription-related histone pre-mRNA processing

and cell-cycle regulation, which are highly conserved processes

(Dominski et al. 2002).

To investigate if our results are likely to be influenced by the

specifics of the demographic models, we also analyzed data using

two other models. In model 2, we assumed that there was no

migration between the populations but that the admixture rate

was 20% in all AA. In model 3, we use alternative parameter esti-

mates of T = 0.138, aA = 10.3, and aE = 14.1, g = 1.91, b = 0.021,

and m = 4.4. These estimates were obtained using an alternative

estimation procedure and slightly different assumptions regarding

admixture (see Methods). In general, the P-values using all three

models were highly similar (e.g., Table 1), suggesting that our

inferences regarding selection are not very sensitive to minor

perturbations of the assumed demographic model.

Increased population subdivision (FST)

It is of some interest to examine which genes show evidence for

elevated FST even after fitting the data to a detailed demographic

model. FST is a measure of population subdivision that takes on

large values when populations are highly differentiated geneti-

cally, and small values when the populations are genetically sim-

ilar. A selective sweep that has only affected some of the analyzed

populations can greatly increase FST (Slatkin and Wiehe 1998;

Santiago and Caballero 2005). Therefore, numerous tests have

been proposed that use elevated levels of FST to detect selection.

We here compare the observed FST value to the distribution of FST

values obtained in simulations under the previously estimated

demographic model.

Strikingly, the second most significant gene is SLC45A2,

which has previously been shown to account for part of the var-

iation in human skin color (Graf et al. 2005, 2007). Only the allele

frequencies of TRAF2 differ more between the two populations.

TRAF2 forms as complex with TRAF1 to recruit apoptotic

repressors. TRAF2 fulfills a wide variety of physiological roles, in-

cluding from B-cell signaling and inflammatory response (for re-

view, see Au and Yeh 2007). It seems plausible that a gene that is

also involved in the defense against viruses and other pathogens

will adapt quickly to new environments and therefore segregate

faster.

There are two biological process categories with highly sig-

nificant FST in excess of small P-values compared with the genes

in the rest of the genome. The first one is receptor-mediated endo-

cytosis, which again suggests selection driven by host–pathogen

interactions. The second category is the fairly large collection of

genes involved in signal transduction, which features TRAF2 and

many small GTPases (e.g., GIT2, RIT2).

Excess of high frequency–derived alleles (MWU-high)

An excess of high frequency polymorphisms is indicative of se-

lection acting to maintain variability in the population, or possi-

bly, the transient effect of a selective sweep as the selected allele

increases in frequency in the population. All 15 genes with the

smallest P-values for the MWU-high test have also highly signifi-

cant P-values, if the two populations are considered separately.

Furthermore, for almost all of them, the MWU-high on the folded

frequency spectrum is not significant. The interpretation of this

test is, therefore, fairly clear: a recent, complete or nearly complete

selective sweep.

The gene with the largest excess of high frequency–derived

alleles is SIGLEC10. One of the first reported physiologically rele-

vant genetic differences between humans and chimpanzees is

a deletion in CMAH, the enzyme that converts sialic acids (Chou

et al. 1998). Since then multiple other genes involved in sialic acid

biology have been reported to be under selection (Altheide et al.

Figure 3. The median neutrality index (NI) in the 200 genes with
largest (light) and smallest (dark) P-value in the MWU-high, MWU-low,
and FST and G2D tests without fixed differences. The dotted line indicates
the global median of NI. Values above one (solid line) indicate negative
selection, values below positive selection.
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2006). The SIGLEC genes that recognize sialic acid–coated surface

proteins evolve particularly fast. This is probably because many

pathogens use sialic acid sugar coats to evade recognition by the

immune system. The second gene on this list is a key regulator of

apoptosis NLRP1 (also known as NALP1). Multiple other apoptosis

genes have previously been reported to be positively selected

(Nielsen et al. 2005a).

The biological process category showing the strongest evi-

dence for selection according to this criterion (P = 0.0022) is muscle

development (Fig. 4, Table 2). The two genes in this category with

smallest P-values are MYOM1, a structural protein defining the

M-Band of the sarcomere, and MYH1, which encodes a myosin

heavy chain of skeletal muscle, and variants are associated with

risk of colorectal cancer (Jenkins et al. 2006). Two further muscle-

related genes are among the 15 most extreme genes: MYBPHL,

which contains functional promoter differences between humans

and chimpanzees (Chabot et al. 2007), and PAMR1 (also known

as DKFZP586H2123), a regeneration associated muscle protease.

MSTN (also known as GDF8) another muscle gene, has previously

been reported to be under positive selection (Saunders et al. 2006),

and MYH16 received a loss-of-function mutation on the human

lineage (Stedman et al. 2004). All in all, muscle biology seems to

have undergone many changes during human evolution. The

next significant category is cell adhesion–mediated signaling, which

is a large category incorporating diverse physiological processes.

The third highly significant biological process category is

chemosensory perception, which is mainly due to olfactory receptor

genes. These genes show evidence for positive selection using

multiple other methods, including McDonald-Kreitman tests

(Gilad et al. 2003; Bustamante et al. 2005) and dN/dS ratios between

humans and chimpanzees (Nielsen et al. 2005a).

Excess of low frequency alleles (MWU-low)

An excess of low frequency polymorphisms can be caused both by

the effect of a recent selective sweep and by negative selection

Table 1. The genes showing the most extreme frequency distributions as determined by the G2D statistic

Entrez
geneID Symbol G2D

P-value

FST

Excess of

dN/dS

Category of
maximum
expression Annotation

Model
1

Model
2

Model
3 Low Intermediate High

84766 EFCAB4B 33.17 0.00 0.000 0.000 — CEPH — — — NA Calcium-binding protein
that interacts with ATN1,
involved in inherited Ataxias

25888 ZNF473
(Zfp-100)

32.09 0.00 0.044 0.001 0.147 — AA — 0.68 Bone
marrow

Has KRAB and zinc finger
domains, transcription-related
histone pre-mRNA processing,
and cell-cycle regulation

3431 SP110 29.70 0.00 0.003 0.002 — — — — 0.56 Blood Nuclear hormone receptor,
hepatic veno-occlusive disease
with immunodeficiency;
Mycobacterium tuberculosis;
susceptibility to hepatitis C

56673 C11orf16 25.46 0.00 0.030 0.004 — — AA, CEPH — 0.69 NA None
79629 OCEL1 20.30 0.00 0.000 0.002 — — AA — 0.83 Liver Occludin-domain containing

protein
124773 C17orf64 19.32 0.00 0.028 0.000 — — AA AA 0.76 Testis None
3628 INPP1 18.60 0.00 0.008 0.004 — — AA, CEPH — 0.19 Testis Inositol phosphate-1-phosphatase,

linkage to bipolar disorder and
colorectal cancer

83903 GSG2 18.01 0.00 0.069 0.008 0.146 — CEPH — 1.01 NA Germ-cell–associated 2 (haspin),
phosphorylation of histone H3

84073 MYCBPAP 17.79 0.00 0.027 0.007 — — CEPH — 1.97 Testis c-myc binding protein–associated
protein, involved in
spermatogenesis

55147 RBM23 17.42 0.00 0.038 0.005 0.233 AA CEPH — 2.47 Blood Coactivator of steroid hormone
receptors and alternative
splicing by U2AF2 (U2AF65)

114880 OSBPL6 16.01 0.00 0.001 0.004 — AA, CEPH — — 0.30 Brain Intracellular lipid receptors
presumably involved in brain
sterol metabolism, association
with locus for coronary artery
disease in the absence of
hypercholesterolemia

79602 ADIPOR2 15.93 0.00 0.000 0.004 — CEPH — — 0.00 Adrenal
gland

Adiponectin receptor 2; linked to
type 2 diabetes, body mass and
metabolic rate

221 ALDH3B1 15.59 0.00 0.001 0.006 — — AA — 0.15 NA Aldehyde dehydrogenase;
association with schizophrenia

168537 GIMAP7 15.39 0.00 0.000 0.011 — — — — 0.12 Blood GTPases of the immunity-associated
protein family

140597 TCEAL2 15.17 0.00 0.004 0.006 — AA, CEPH — — 1.01 Brain Transcription elongation
factor A (SII)-like 2

NA, not available.
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acting on deleterious segregating mutations. The biological pro-

cess categories showing the strongest evidence for an excess of low

frequency polymorphisms are nucleoside, nucleotide and nucleic acid

metabolism, and mRNA transcription regulation. Note that the latter

group is largely a subgroup of the former. The shared significant

genes include a wide variety of transcription factors, including

ubiquitous ones (CNOT3) to more specialized (FOXK2, POU1F1).

Because the 5% FDR was empty for this test, we will not discuss the

results of this test further.

MicroRNA-regulated genes experience more negative selection

MicroRNAs are small RNAs that function as negative regulators of

translation by binding to mRNAs. Most known microRNAs are

highly conserved (Lagos-Quintana et al. 2003; Ibanez-Ventoso

et al. 2008), and the predicted binding sites of microRNAs in the 39

UTRs of genes show evidence of negative selection (Chen and

Rajewsky 2006). Here, we show that the protein-coding regions of

genes that are putatively regulated by microRNAs, as predicted by

Chen and Rajewsky (2006), also experience more negative selec-

tion and are more constrained than other genes. First, the median

dN/dS ratio in microRNA-regulated genes is 0.136, which is con-

siderably lower than for genes that are not predicted to be regu-

lated by microRNAs (0.268). Furthermore, microRNA-regulated

genes are much less likely to have an excess of high frequency–

derived alleles (MWU-high P > 0.9999) and much more likely to

have an excess of low frequency alleles (MWU-low P < 0.0001),

suggesting the action of ongoing negative selection on deleterious

mutations. MicroRNA-regulated genes also have a marginally

higher degree of population subdivision (FST, P = 0.03). Not only

are microRNA genes highly constrained, they also show more

evidence of negative selection acting on mutations segregating in

the population than other genes.

Disease-related genes

As several of the tests show an apparent excess of disease-related

genes, we compared the ratio of genes with P-values larger and

smaller than 0.05 between genes with a morbidity annotation in

the OMIM database to genes without such an annotation. The

tests based on the frequency spectrum or FST show no significant

association with morbidity status. The G2-test including FDs to

the chimpanzee (P = 0.0057) shows a significant association with

OMIM-morbidity. Furthermore, the NI indicates those genes

contain slightly deleterious variants that are selected against.

However, the OMIM-morbidity index might be a bit biased toward

containing true Mendelian disorders, and hence, it is not so sur-

prising that the evolution of those genes is dominated by negative

selection. We were more interested in the evolution of genes that

are involved in complex traits. We used the list of genes compiled

by Hirschhorn et al. (2002). If we consider all genes in the list for

which there was also information in our data (N = 157), we find

a modest enrichment in genes with an excess of intermediate and

a shortage of low frequency alleles (MWU-folded high P = 0.04;

MWU-folded low P = 0.037). When we restrict the Hirschhorn list

to the studies that have been repeated (N = 61), the MWU-test is

significant for the unfolded frequency spectrum, showing that

genes associated with complex disease have an excess of high and

a shortage of low frequency alleles (MWU-high P = 0.0041; MWU-

low P = 0.9957).

These results are in accordance with previously published

results by Blekhman et al. (2008), who showed that Mendelian

diseases tend to be associated with negative selection while genes

associated with complex disease may be under less purifying se-

lection or even under positive selection.

Discussion
The approach taken here avoids many of the pitfalls encountered

in studies aimed at detecting selection in humans. Demography is

taken into account by fitting a demographic model involving

admixture, a bottleneck, divergence, and migration among pop-

ulations. The tests of neutrality are based solely on the same in-

formation used to fit the demographic model. In this way, as much

of the variance among loci as possible is ascribed to the de-

mographic model. Residual variation must then be due to selec-

tion. The resulting test may be conservative because much of the

effect of selection has been attributed to demographic factors, but

Table 2. Biological process categories with an excess of small P-values in one or more of the tests

Biological process category Count MWU-high MWU-low FST G2D

Muscle development 27 0.0022 0.9978 0.1103 0.0131
Cell adhesion–mediated signaling 143 0.0069 0.9931 0.0202 0.2173
Chemosensory perception 10 0.0082 0.9918 0.6748 0.0965
Nucleoside, nucleotide, and nucleic acid metabolism 492 0.9992 0.0008 0.9581 0.8176
mRNA transcription regulation 183 0.9989 0.0011 0.9372 0.4912
Receptor-mediated endocytosis 14 0.0127 0.9873 0.0085 0.0344
Signal transduction 683 0.043 0.957 0.0097 0.3561
Other amino acid metabolism 9 0.0309 0.9691 0.961 0.0083

The values shown are P-values for a Mann-Whitney U (MWU) test comparing P-values from the specified category of genes to all other genes. Only
categories for which this MWU test result in P < 0.01 are shown. Results for all categories are shown in Supplemental Material S1.

Figure 4. Frequency spectra of all genes combined and of genes in-
volved in muscle development according to the PANTHER database.
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it will, on the other hand, be unlikely to provide spurious evidence

for selection. We note that there are many possible demographic

models that have not been explored in this study. It is, therefore,

possible that the model we have estimated does not accurately

describe the demographic histories of the populations. However,

the use of a more accurate demographic model, which can be

shown to fit the aspects of the data used to detect selection, is

necessarily an improvement over previous scans for selection in

the human genome that have assumed simpler and more un-

realistic demographic models or that have ignored the problem of

confounding demographic effects altogether. The use of a de-

mographic model allows us to base inferences on P-values instead

of just relying on an outlier approach. Additionally, we have used

correlations with the NI to demonstrate that the most extreme

genes identified in this article indeed are under selection.

The sample presented here contains only 78 chromosomes.

While the relatively small sample size may be cause for concern in

some analyses, it should be noted that several of the tests pre-

sented here have been demonstrated to have good power, even for

smaller sample sizes. For example, in a study by Nielsen et al.

(2005a), the power of the MWU test was evaluated when applied

to a sliding window along the chromosome of a sample of only 50

chromosomes. The selection model considered involved a single

recent selective sweep, and it was found that the power was larger

than 50% when 2Ns > 300, where N is the population size and s is

the selection coefficient acting on the selected mutation. The

power of a test similar to the G2D test was found to be even higher.

Recent surveys of natural selection in humans have been

based on different methods, including analyses of dN/dS ratios

in the human lineage (Clark et al. 2003; Nielsen et al. 2005a),

comparisons between dN/dS ratios within and between species

(Bustamante et al. 2005), the distribution of FST values (Akey et al.

2002), and haplotype structure (Voight et al. 2006). These analyses

identify overlapping sets of genes, but sometimes that overlap is

small (for reviews, see Sabeti et al. 2006; Nielsen et al. 2007). One

reason is that the type of selection identified by these methods

may be quite different, and the methods are sensitive to selection

occurring at different time scales. For example, methods based on

dN/dS ratios in the human lineage (Clark et al. 2003) will detect

strong recurrent positive selection occurring any time during the

past 5–6 Myr of human evolution. In contrast, methods based on

haplotype structure (Gabriel et al. 2002; Sabeti et al. 2002; Voight

et al. 2006) will tend to detect very recent ongoing selection,

possibly associated with just a single selected mutation.

A complete comparison of different scans of selection in the

human genome is beyond the scope of this article (but see Sabeti

et al. 2006) and may, in any case, not be very informative about

the efficacy or appropriateness of the methods due to the afore-

mentioned factors. Nonetheless, it is of some interest to which

degree our approach identifies genes previously implicated to be

under positive selection. In general, many of the genes with the

highest dN/dS ratios in the human lineage do not show particularly

strong evidence for positive selection according to the tests

employed here. For example, PRM1, the gene with the highest

dN/dS ratios in humans, contains only two polymorphisms and has

consequently very moderate P-values for the four tests ranging

from 0.38–0.96. Given that this gene shows overwhelming evi-

dence for repeated positive selection based on an excess of non-

synonymous mutations in between-species comparisons, it is

possible that the low number of observed polymorphisms in this

gene is caused by a recent selective sweep. However, there is also

some overlap with genes shown in previous studies to be under

positive selection, such as IL4R, which has P-values of 0.04 and

0.0015, according to the G2D and FST-based test. This gene was

previously flagged as being under selection by Wu et al. (2001).

Probably the most famous case of selection in the human genome,

the LCT gene, shows little or no evidence for selection based on an

excess of high frequency variants (MWU-high P = 0.247). Con-

tributing factors to the relatively high P-value may be that our data

set does not contain the entire LCT region but just 14 SNPs and

only 39 individuals, and that the type of selection observed in

LCT, a very recent incomplete selective sweep, may be hard to

detect based on frequency spectrum information alone.

We compared our results to a previous genome scans aimed at

detecting regions of the genome affected by selective sweeps by

Williamson et al. (2007). Williamson and colleagues used genome-

wide SNP data and a composite likelihood approach to detect re-

cent completed selective sweeps. The method is similar in spirit to

the current method in that it is based on comparing the frequency

spectrum in a local region to the frequency spectrum observed in

the rest of the genome. But it differs substantially from the current

study in using genome-wide SNP data instead of exonic rese-

quencing data and in using a statistical method that uses the

spatial pattern of changes in the frequency spectrum along the

sequence and an explicit population genetic model of a recently

completed sweep, to detect selection. We would expect large dif-

ferences between the current study and the Williamson et al.

(2007) study, because the Williamson et al. study predominantly

has power to detect a recently completed sweep, while the current

methods may also detect incomplete selective sweeps, balancing

selection, and some forms of negative selection, but may have less

power to detect a recently completed sweep. In addition, we would

expect the results to differ because of the differences between

genome-wide SNP data, which only has few rare SNPs, and direct

sequencing data from short regions. However, there is significant

correlation between the results from the two studies, at least using

the G2D statistic. We tested whether the test statistics calculated in

this article were significantly larger among genes flagged as genes

in regions under selection by Williamson et al. than among genes

not flagged by Williamson et al., using a Mann-Whitney U-test,

and obtained P-values of 0.039, 0.062, 1, and 0.056 for the G2D,

MWU-high, MWU-low, and FST test, respectively. Genes identified

by both the Williamson et al. (2007) study and by the G2D statistic

(P < 0.05) include P4HA1, RASSF9 (also known as PAMCI),

HIST1H2BE, and HIST1H2BF.

The data set analyzed here is the first comprehensive data set

of variability in human protein-coding genes that is not based on

SNP data, but is based on directly sequenced DNA. The problems

associated with ascertainment biases in SNP data are, therefore,

avoided. We cannot exclude the possibility that there are other

problems with the data, such as missing singletons. However, the

data have been produced through a laborious process involving

manual verification of each genotype call for each individual. A

considerable amount of efforts have been devoted to ensuring the

high quality of the data (see Bustamante et al. 2005).

While no study can claim not to be influenced in any way by

confounding factors such as demography and ascertainment bia-

ses, the current study has been designed to minimize the effect of

these factors. The fact that the most extreme genes according to

the tests based on allele frequency distributions also have extreme

values of the NI further bolsters the confidence that the tests

employed here in fact do detect natural selection.

The demographic model estimated from nuclear DNA allows

for considerable amounts of migration between European and
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African populations, beyond what can be ascribed to admixture

due to the inclusion of AAs. Interestingly, we obtain somewhat

smaller estimates of migration rates for the X chromosome, pos-

sibly suggesting male driven gene-flow between populations.

While we are reluctant to interpret the results too strongly because

of the problems associated with the use of AAs as a population

group, our results support the conclusion of previous studies

(Harding et al. 1997; Wakeley 1999) that (1) divergence from an

ancestral population, (2) migration among populations, and (3)

changes in population size must all be included to give an ade-

quate description of human genetic ancestry. Somewhat curiously,

only four AA individuals show evidence for admixture; however,

those individuals show very strong evidence of admixture. It is

possible that the estimation of admixture proportions without the

use of appropriate African and European reference populations

will tend only to detect admixture in individuals that are very

highly admixed. We have therefore also analyzed the data using

a model with more admixture (see Methods) and found similar

results. The fact that the model fits the data well, even though it

includes less admixture in AAs than usually expected, is not sur-

prising given that multiple different demographic models may fit

the frequency spectrum equally well (Myers et al. 2008).

There are good theoretical reasons to believe FST should cap-

ture information regarding recent selective sweeps if selection

occurred after the populations split and if the effect of migration is

sufficiently weak (Slatkin and Wiehe 1998; Santiago and Caballero

2005). It is not obvious if this is the case for humans, but FST has

previously been used to scan the genome for selected loci (e.g.,

Akey et al. 2002). However, FST showed no correlation with the NI

in the data analyzed here. A contributing factor is most likely that

the type of selection detected using FST involves a local selective

sweep or other forms of population-specific selection, while the NI

is sensitive to selection increasing (or decreasing) the rate of amino

acid divergence among species. The lack of correlation between NI

and FST may simply be a consequence of the fact that tests based

on these two statistics may detect different forms of selection. A

contributing factor may also be that selection typically is not

strong enough compared to gene-flow among populations for

selective sweeps to increase FST. Possibly, population subdivision

may not be the best indicator of selection in the human genome,

except if selection acts in a population-specific manner in con-

nection to adaptations to the local environment. SLC45A2, which

gave the second most significant gene for FST and has been shown

to be responsible for variation in skin color, might be an example

of adaptation to a local environment, i.e., exposure to sunlight.

The various tests applied respond to different temporal

courses of natural selection, but because all are based on extant

human polymorphism, all examine a relatively recent human

past, extending back to perhaps 100,000 yr.

Previous genome-wide studies that have focused on positive

selection and accelerated evolution have found brain-specific

genes to be highly conserved and show very little evidence for

positive selection. However, a lack of acceleration in the human

lineage does not necessarily indicate a lack of selection on segre-

gating variants. In this study, several tests identified numerous

brain-specific genes, in particular the G2D test and the MWU-high

test. The G2D test identified two genes associated with bipolar

disorder and schizophrenia, respectively, and the MWU-high test

identified two more associated with schizophrenia and HTR7,

which has been associated with multiple neuropsychiatric dis-

orders. Our results clearly show that selection has been acting on

some genes associated with higher brain function in the recent

evolutionary history of humans. Surely, there will be many such

genes identified, as the association studies identify them with

increasing speed and reliability.

However, the gene ontology category of biological processes

showing the strongest excess of high frequency alleles is related to

neither higher brain functions nor the immune system, but in-

stead is related to muscle development. It seems plausible that

muscle had to change during human evolution to keep up with

changes in posture, the demand on precision movements over

power, and as response to changes in dietary needs (Stedman et al.

2004). The signal of selection we report here is true for very recent

human evolution. Thus, there must also have been some lifestyle

changes during the last ;100,000 yr that required adaptation in

muscle development, some of which might still be ongoing (e.g.,

Saunders et al. 2006).

One general result we find here is that genes predicted to be

regulated by microRNAs evolve under strong negative selection

and experience much less positive selection than other genes. The

extent of microRNA regulation in the human genome may be

larger than originally thought (Friedman et al. 2009), and a possi-

ble explanation for the negative selection could be the inflated

chances for pleiotropic effects of mutations propagating through

microRNA-regulated networks.

Methods

Human polymorphism data
The data analyzed in this article have previously been described by
Bustamante et al. (2005). It contains 13,400 protein coding genes
obtained by direct sequencing from 21 EA and 19 AA individuals.
There are a total of 41,151 SNPs in the data set. In tests requiring
an outgroup, data from the chimpanzee (Clark et al. 2003) were
used.

The human subjects, DNA sequence procedures, quality
controls, and IRB approval procedures are all further described by
Bustamante et al. (2005). The data have been deposited in dbSNP
and can be retrieved using the Applera_GI handle. Genotype data
and annotations for each gene also appear in an accessible format
as Supplemental material S2.

Estimation of admixture proportions

We used a maximum likelihood approach similar to the Bayesian
approach implemented in structure (Pritchard et al. 2000). In
brief, the proportion of an individual’s (i) genome that is from
population k is q

ðiÞ
k . The n/2 by K matrix, where n/2 and K are

the numbers of individuals and populations, respectively, of all
values of q

ðiÞ
k , is denoted by Q. The probability that individual i

has genotype jv in locus l is then

Pr½xðiÞl = ðj; vÞ� = 2ð+
k

pkljq
ðiÞ
k Þð+

k

pklvq
ðiÞ
k Þ; ð1Þ

where pklj is the frequency of allele j in locus l in population k.
Notice that there is an independence assumption between the two
gene copies in each locus. This assumption is not well justified, as
admixture proportions are truly properties of parental gene copies
and not of diploid individuals. If the admixture proportion differs
between the two parents, Equation 1 is not correct. Nonetheless,
this is the common assumption used in the popular program
structure (Pritchard et al. 2000), and because it appears to provide
a useful approximation, we will also make this assumption here.
The program structure (Pritchard et al. 2000) is based on a Bayesian
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approach for estimating admixture proportions using a Dirichlet
distribution as prior for q

ðiÞ
k . We use a maximum likelihood ap-

proach for estimating q
ðiÞ
k assuming the allele frequencies in each

population are equal to the observed frequencies. As in the
method of Pritchard et al. (2000), the likelihood function is
obtained assuming independence among loci and individuals by
multiplying the value of Pr½xðiÞl =ðj; vÞ� among all values of i and l.
The likelihood function can be calculated quite easily when
individuals can be assigned to populations a priori. Optimization
can be done using any standard algorithms (e.g., Press 2000a).
Computationally this is much faster than the Markov chain
Monte Carlo (MCMC) used in structure (Pritchard et al. 2000).

Estimation of human demographic parameters

To estimate parameters of a demographic model, we apply a max-
imum likelihood approach assuming independence among loci.
Let the demographic parameters be contained in the vector g,
and pj(g) be the probability of observing a SNP of type jg. A SNP of
type j is a SNP in which the mutation occurs at a frequency of j/n in
the sample. When the phase of the mutations are not determined,
a SNP of type j is any SNP occurring at frequency j/n or (n � j)/n.
The values of pj(g), j = 1, 2,. . ., n � 1 give the site frequency
spectrum, which summarizes the allele frequency distribution
in the data. Note that this is the full or unfolded site frequency
spectrum, where the ancestral state is inferred by parsimony using
the chimpanzee as an outgroup. The likelihood function is then
defined as

LðgÞ[
Yn�1

j = 1

pjðgÞ
h inj

: ð2Þ

Notice here the assumption of independence among SNPs. When
SNPs are in linkage disequilibrium (LD), this assumption is not
justified. In that case, L(g) is a composite likelihood function.
Estimators based on the composite likelihood function can be
shown to be consistent under quite general assumptions (Wiuf
2006). The expected frequency of a new mutation can be found
quite generally in terms of an expectation of expected coalescence
times (Griffiths and Tavaré 1999). Using the notation of Nielsen
(2000), the likelihood function (in the limit of small mutation
rates) can be written as

pjðgÞ=
EgðtjÞ
EgðTÞ

; ð3Þ

where tj is the sum of branch-lengths in the tree in which a sin-
gle mutation would cause a polymorphism of size j, and T is the
total tree length. Values of pj (g) can then be calculated (app-
roximated) using standard coalescent simulations (Hudson
1983). B coalescent genealogies are simulated under g. For gene-
alogy i, the total tree length (Ti) and sum of the length of all
edges in which a single mutation would cause a mutation of
frequency j in the sample (tij) are calculated. Then pj(g) is ap-
proximated as

+B
i = 1tij +B

i = 1Ti

� ��1
: ð4Þ

The value of g that maximizes L(g) can be found by repeating this
scheme for many different values of g, providing a maximum
likelihood estimate of g, or a maximum composite likelihood es-
timate when SNPs are not independent. Similar approaches have
been used for inferences of demographic parameters in several

other studies (Nielsen 2000; Wooding and Rogers 2002; Polanski
and Kimmel 2003; Adams and Hudson 2004; Marth et al. 2004;
Williamson et al. 2005). In many models, it is possible to evaluate
Equation 3 without the use of simulations (Wooding and Rogers
2002; Williamson et al. 2005).

The likelihood was optimized by making successive opti-
mizations on a grid of values, with each iteration zooming in on
the current approximate maximum likelihood estimate. Using
a grid of values, rather than using simplex bracketing, circumvents
problems encountered by many algorithms caused by the simula-
tion variance in the estimation of the likelihood values. Optimi-
zation algorithms using derivatives of the likelihood function are
also not applicable in this case because of the simulation variance.

Missing data were accounted for as in the method of
Nielsen et al. (2005b) by summing over all possible states of the
missing data. Multiple hits were also taken into account by sim-
ulating data with multiple hits using the parameter estimates from
Williamson et al. (2005), based on the method of Hwang and
Green (2004).

Alternative estimation procedure

Parameters for our demographic model 3 are maximum likelihood
values inferred using a method which approximates the joint
frequency spectrum by numerically solving the appropriate
diffusion equation (R.N. Gutenkunst, R.D. Hernandez, S.H.
Williamson, and C.D. Bustamante, in prep.). In this method,
the population allele frequencies in AAs are modeled as an aver-
age of those in Europeans and Africans, where the average is
weighted by the admixture proportion.

Distributions of allele frequencies in the European and Afri-
can populations are calculated using the demographic model of
Figure 1. The derivative-based BFGS algorithm (e.g., Press 2000b)
was used to optimize the demographic parameters (including the
admixture proportion). Missing data were accounted for by pro-
jecting down to 28 calls per population using a hypergeometric
distribution as in the method of Nielsen et al. (2005a).

Tests of neutrality

The tests of neutrality we use here are all based on summarizing
the data in terms of the allele frequency distribution and number
of FDs. In the most general case, we consider the 2D-SFS for
individuals of EA and AA ancestry, X = (X0,1,. . ., X0,n, X1,0, X1,1,. . .,
X1,n,. . ., Xnm), where Xij is the number of derived alleles of fre-
quency i in the EA population and frequency j in the AA pop-
ulation. We similarly define p = (p01,. . ., p0n, p10,. . ., p1n,. . ., pnn),

where pij is the probability of observing a derived allele of fre-
quency i in the first population and frequency j in the second
population in a random position in the genome. Notice here that
positions included are any positions with FD or with a poly-
morphism, but not invariable positions. Then a test statistic is
formed using a composite likelihood method similar to the one
used in test 1 of the method of Nielsen et al. (2005b), i.e., by
comparing the X to the expected value of X calculated from all
the genomic data using a likelihood ratio test statistic (the G-test
statistic). The test statistic measures how well the local pattern in
a gene fits the global pattern observed in the genome. Critical
values for the test are obtained using coalescent simulations
(Hudson 1983) under the demographic model estimated from
the genome-wide data, including admixture. Recombination
rates were assumed to be 7.5 3 10�4 per base pair, per generation
based on the estimates of Nielsen et al. (2005b). Simulations
without recombination (data not shown) were also performed,
yielding similar results. Simulations are performed individually
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for each gene conditioned on the total number of variable sites
for that gene while accounting for missing data using the method
of Nielsen et al. (2005b). As for the demographic analyses, the
parameter estimates of Williamson et al. (2005) are used to correct
for multiple hits along the lineage leading from humans to
chimpanzees. The P-values are, therefore, corrected for the effect of
missing data. Five different tests have been implemented using
various attributes of the information. The tests are as follows.

The G2D test

This test is the test based on the two-dimensional frequency
spectrum with FDs, mentioned in the section above. The test
statistic is given by

log
pðXðjÞ P̂

ðjÞ��� Þ

pðXðjÞ P̂:Þ;
���

ð5Þ

where X(j) represents the data for the jth locus, P̂
ðjÞ

is the maximum
likelihood estimate of P based only on data in the jth locus, P̂ is
the maximum likelihood estimate of P based on the pooled data
from all loci. This statistic measures how well the data in locus j fit
the pattern of allele frequencies observed in the pooled data. The
test is performed including the class of fixed mutations. This test
was applied to all of the information in the two-dimensional fre-
quency spectrum, while the tests discussed next uses subsets of the
data. They are supposedly then sensitive to different types of se-
lection acting on the genes.

FST

This test is based on the FST statistic (Weir and Cockerham 1984),
similarly to the method employed by Akey et al. (2002). The test
rejects neutrality for high values of FST.

MWU-low

This is a Mann-Whitney U-test comparing the frequency spectrum
in the gene to the genome-wide frequency spectrum. The test
rejects when there is an excess of low frequency polymorphisms.
The folded frequency spectrum is used in this test.

MWU-high

This test is similar to the MWU-low, but it rejects when there is an
excess of high frequency polymorphisms.

For all tests, FDR sets were constructed using the modification
of the methods of Benjamini and Hochberg (1995) and Storey
(2002) proposed by Williamson et al. (2007).

Correlation between NI and frequency spectrum

We validate inferences of selection by showing a correlation be-
tween the NI and the inferences based on the frequency spectrum.
However, as the same data have been used to calculate the NI and
tests statistics based on the frequency spectrum, it is not obvious
that the statistics are uncorrelated under a neutral model. If the
statistics are correlated under a neutral model, the NI cannot be
used to validate findings of selection. We have, therefore, exam-
ined the correlation of the statistics using simulations. In Figure 5,
we show an x–y plot of the joint distribution of Tajima’s D, chosen
as one possible summary of the frequency spectrum, and the NI.
We get similar results for other functions of the frequency spec-
trum such as FST and the other statistics used in this paper. We

assume a chromosomal region, mimicking a human gene, with
a cumulative population scaled recombination rate of 2Nr = 0.005,
u = 4, a sample size of n = 38, and a divergence between species of
20N generations. We assume that 50% of all (nonlethal) mutations
are nonsynonymous. Simulations were performed using a custom-
made forward simulation program, using 2N = 400 as a proxy for
a larger population size. As evident from the figure, the values of D
and NI are perfectly uncorrelated. This is not surprising as the
number of nonsynonymous and synonymous mutations, given
the total number of mutations, are independent of the counts of
the frequency spectrum. We also show results for a similar simu-
lation performed under the same parameter settings, but assuming
that 10% of all nonsynonymous mutations have a population
scaled selection coefficient of 2Ns = 20. We see that the values of D
and NI are both shifted toward smaller values.

Combining evidence in categories

Genes have been divided into categories according to expression
pattern, biological process, and molecular function. A Mann-
Whitney U-test is then used to test for excess of small P-values in
each category compared with the rest of the data. The biological
process and molecular function categorization is based on the
PANTHER database (Thomas et al. 2003). Genes are allocated to
a particular tissue type if they have their maximal expression in
that tissue type according to the Novartis Gene Atlas (Su et al.
2002).
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